\qquad
\qquad

Math 1C: INA Lesson 2 Suggested Problems

Theoretic Problems: Discussed in-class

1. Geometric series test Consider the infinite series $\sum_{k=1}^{\infty} a \cdot r^{k-1}$.
A. Derive the geometric sum formula given by $S_{n}=\sum_{k=1}^{n} a \cdot r^{k-1}=a \cdot \frac{1-r^{n}}{1-r}$
B. Use part A and the limit of a geometric sequence to derive the geometric series test.

Problems Solved in Jeff's Handwritten Notes

2. Example 1: Suppose we have a sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined by the explicit formula $a_{n}=n$. Consider the sequence of partial sums associated with $\left\{a_{n}\right\}_{n=1}^{\infty}$ given by

$$
S_{n}=\sum_{k=1}^{n} a_{k}=1+2+3+\cdots+n
$$

A. Show that $S_{n}=\frac{n \cdot(n+1)}{2}$
B. Find $\lim _{n \rightarrow \infty} S_{n}$
3. Example 8.3 Quick Check 3 p. 621: Suppose we have a sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined by the explicit formula $a_{n}=\frac{1}{2^{n}}$. Consider the sequence of partial sums associated with $\left\{a_{n}\right\}_{n=1}^{\infty}$ given by

$$
S_{n}=\sum_{k=1}^{n} a_{k}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}
$$

A. Find the first six terms of the sequence of partial sums.
B. Show that $S_{n}=1-\frac{1}{2^{n}}$.
C. Find $\lim _{n \rightarrow \infty} S_{n}$.
4. Example 8.3.1a p. 621: Determine if the series

$$
\sum_{n=1}^{\infty} 2^{2 n} \cdot 3^{1-n}
$$

converges or diverges.
5. Example 8.3.1c p. 621: Evaluate the following series or state that the series diverges:

$$
\sum_{k=2}^{\infty} 3 \cdot(-0.75)^{k}
$$

6. Example 8.3.2 p. 622: Write the repeating type II decimal number

$$
y=2.3 \overline{17}=2.317171717 \ldots
$$

as a ratio of integers. Please make sure to use the geometric series test in your solution.
7. Example 8.3.3b p. 622: Show that the telescoping series

$$
\sum_{k=1}^{\infty} \frac{1}{k \cdot(k+1)}
$$

converges and find the sum.
8. Exercise 8.3.67 p. 624: Find the limit of the infinite (telescoping) series

$$
\sum_{k=1}^{\infty} \frac{1}{16 k^{2}+8 k-3}
$$

converges and find the sum.

Suggested Problems

9. Example 8.3 .52 p. 623: Write the repeating decimal $1.00 \overline{39}=1.0039393939 \ldots$ as a geometric series. Then, use the geometric series test to write this repeating decimal as a fraction (a ratio of two integers).
10. Example 8.3 .58 p. 623 : Find the limit of the series: $\sum_{k=3}^{\infty} \frac{1}{9 k^{2}+15 k+4}$
11. Example 8.3 .33 p. 623 : Find the limit of the series: $\sum_{k=0}^{\infty}\left(\frac{1}{4}\right)^{k} \cdot 5^{3-k}$

Optional Challenge Problems

12. Exercise 8.3.83 p. 625
13. Exercise 8.3 .87 p. 625
14. Exercise 8.3 .88 p. 625
